

Fluid couplings

Hydrodynamic power transmission according to the Föttinger principle

We move the world: KTR

Competence meets creativity

As a leading manufacturer of high-quality drive and brake components as well as hydraulic components, KTR supplies mechanical couplings, clamping sets, torque limiters, measuring systems, hydraulic components and high-power brakes all over the world. With more than 50 years experience in power transmission we are trendsetters in the development of coupling technology and offer customised solutions to all industries. The KTR trademark characterises quality and innovation, speed, reliability, flexibility and a close working relationship with customers.

Having started with the curved-tooth gear coupling BoWex® and the torsionally flexible jaw coupling ROTEX®, KTR has built up an extensive product portfolio covering torques from 0,1 up to 1.000.000 Nm. The production by KTR's in-house, up-to-date machinery ensures that the couplings are made to the utmost accuracy. The couplings having a unit weight of up to 2 tons or more. Flexible automation ensures a quick and low-cost production even if the product has to be customised to meet customers individual specifications. KTR produces several million couplings a year.

Even though KTR's standard product portfolio is quite extensive, it only represents a fraction of the different options available. KTR is not only a subcontractor but also a solution provider. The knowledge gained from thousands of applications in the field allows us to find optimum, low-cost solutions for customised applications. We will consult you during the planning stage providing drawings and prototypes or arranging for local discussions if required. Every year KTR produces more than 10.000 new products ordered by customers. This trend increases year on year. This leads to many special products becoming standard items: We permanently give vital ideas to the Power Transmission technology – in cooperation with our customers.

KTR products are evidence of well-designed, quality components resulting in improved characteristics of the drive or brake system and as a consequence, a longer service life of machines. It is our aim to continually improve the quality of our products and services. We can analyse the stiffness of components by utilising FEM (Finite Element Method) systems and we can also perform torsional vibration calculations for entire drive systems. In our in-house Research and Development Centre we test our products on accurate test benches in realistic operating conditions. Our main objective is to provide you with the uppermost satisfaction.

Our technical sales engineers and our well-trained sales staff will be pleased to give you advice. KTR provides you with extensive services online, too: At www.ktr.com you can request information, including our product catalogue, 3D-CAD-models and assembly instructions. For standard applications you can select your drive component from more than 3.500 standard products. Having selected which one is the right component for your application by using our online calculation program, you are now in a position to order the products by contacting your nearest KTR company. Alternatively our KTR Shop is open 24 hours a day.

Our latest scheduling system SAP ERP ensures an optimum networking with our customers and allows for a quick and reliable delivery service. A selection of 3.500 couplings and hydraulic components are permanently available from stock. For orders placed by 2:00 pm we guarantee the despatch of orders the same day! In the KTR Logistics Centre the overall flow of goods is supervised by radio-controlled barcode scanning. Leading distribution partners ensure delivery on time. Our tracking and tracing system allows you to follow the progress of your order at all times. KTR supplies to every location in the world.

For further details about us and our products: www.ktr.com

Föttinger principle - with KTR

More than 50 years of experience in power transmission, more than 20 subsidiaries and 90 dealers throughout the world, this is KTR. As a leading supplier of couplings, clamping sets, torque limiters, torque measuring systems, hydraulic components, brake systems and now also fluid couplings we are the right partner for all those who want to set things in motion.

Unlimited drive to serve our customers in the best possible way

One of the main characteristics of KTR is its effort to meet customer needs by providing customized and innovative engineering solutions. Moreover, we search for opportunities to

complement our product portfolio in a constant attempt to serve our customers in the best possible way, and to be regarded and highly valued as a system supplier.

Fluid couplings are a new addition to our product portfolio which enables us to offer a broader product portfolio for e.g. applications in the mining industry or specific applications such as cooling towers and centrifuges.

With regards to mining applications we supply flexible couplings, brakes and electronic control systems for accurate brake processes. Fluid couplings may find applications in belt conveyors, bucket excavators, crushers and stackers to name a few. As to cooling towers and centrifuges we can provide laminae couplings and elastic couplings respectively - as well as fluid couplings.

A smart product for diverse applications

In general, typical applications for fluid couplings may be found where acceleration of large masses is required (e. g. conveyer belts, centrifuges), and start-up must be gentle. Fluid couplings limit starting torque and hence relieve the engine as the motor can start under low load conditions. Due to the limitation of the starting torque, the engine can reach 80-85 % of its speed within a few seconds. As the starting torque is limited by the fluid coupling, and the motor starts almost load-free, start-up current is low (Fig. 1).

In the case of overload, slip increases and motor and driven machine are protected as torque transmission via fluid coupling decreases.

Another benefit of fluid couplings is that almost no wear occurs since torque is transmitted via a fluid.

KTR offers various types of constant-fill fluid couplings in order to serve a wide range of application areas.

ATEX

KTR is actively associated with governing associations, for instance with the introduction of the ATEX product standard 94/9/EC, well known as ATEX 95. The standard defines the use of products in hazardous areas. We are here to support you, to make sure that you adhere to every safety standard and to advise you of the necessary markings.

Please consult with our technical sales engineers or your local KTR office.

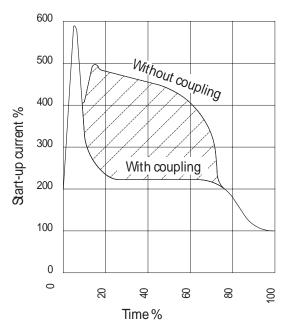


Fig. 1: Absorbed start-up current with and without fluid coupling

The operating principle of hydrodynamic couplings is based on the Föttinger principle: as opposed to the direct working principle, where, for instance, power is transmitted via mechanical couplings, hydrodynamic couplings transmit power by means of a fluid. Since torque transmission is realized via a fluid there is almost no wear in comparison to the direct working principle.

Inner drive

Figure 3 depicts a fluid coupling at standstill, during start-up and at nominal operation. During start-up the input shaft (driving side) mechanically transfers torque to the inner wheel (impeller) of the fluid coupling. Mechanical energy is converted to kinetic energy which in turn gradually accelerates the outer wheel (runner). Torque transmission from outer wheel to driven machine takes place mechanically. Due to the gradual transmission of torque by means of the hydrodynamic coupling, motors can basically start unloaded. Slippage of the coupling initially amounts to 100% then steadily decreases as torque transmission increases, allowing for a soft start-up. An even softer start-up can be realized by fitting fluid couplings with delay chambers (Fig. 2).

Before start-up fluid rests in both the working circuit and the delay chamber. After run-up of the motor, the entire fluid gradually flows into the working circuit, thus providing for an even slower and softer start-up.

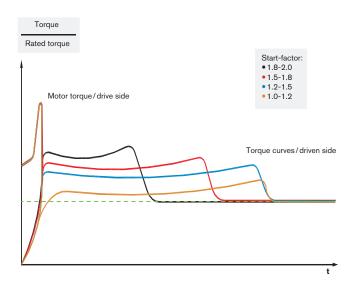


Fig. 2: Torque curves of fluid coupling with no delay chambers and delay chambers of varying sizes

Outer drive

The driving end mechanically transfers torque to the outer wheel. Mechanical energy is converted to kinetic energy which in turn gradually accelerates the outer wheel (runner). Torque transmission from outer wheel to driven machine takes place mechanically.

Slip at nominal speed

The slip of hydrodynamic couplings at nominal speed varies depending on coupling size and oil filling level.

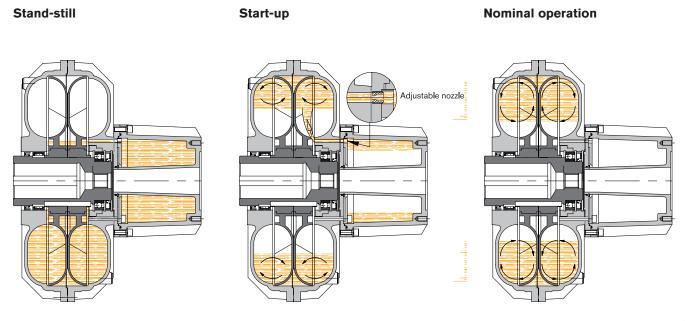


Fig. 3: Working principle of fluid

Hydrodynamic couplings at a glance

KTR offers an extensive range of fluid couplings for standard IEC motors and NEMA motors. Different requirements and fluid coupling types as well as designs entail and necessitate varying performance data:

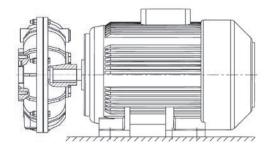
- We can cover differing power ranges depending on speed and type of hydraulic coupling
- Fluid couplings may be supplied for vertical assembly
- Starting torque may be limited to 100 % 200 % of nominal motor torque

Further, KTR can supply various types:

- Depending on required starting torque single, double and enlarged delay chambers may be supplied.
- Fluid coupling with pulley
- Inner or outer drive
- Fluid couplings that provide for mechanical lock-up at nominal speed thus preventing slippage

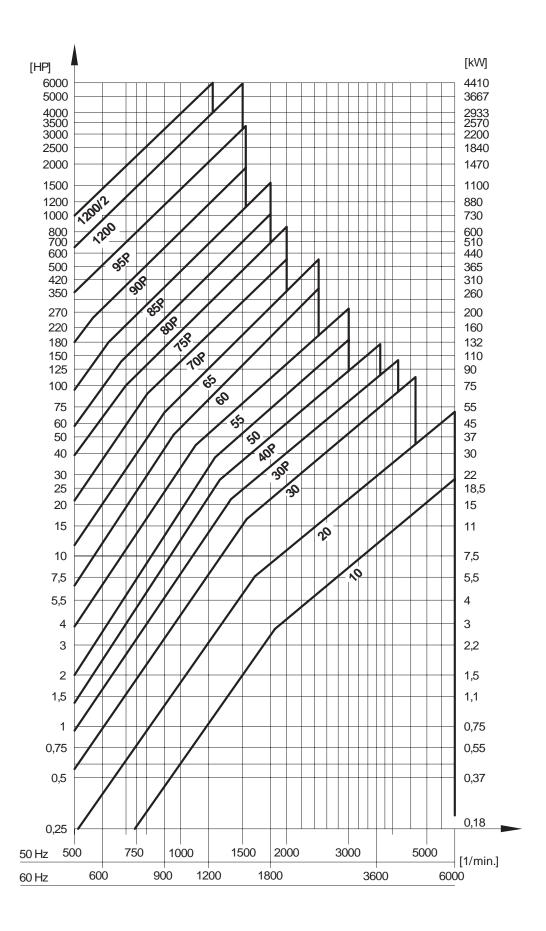
Complementary KTR-products

Our fluid couplings may be complemented with our flexible, gear-type and torsionally stiff couplings. Examples are given below:


- ROTEX®, ROTEX® type CF
- REVOLEX®
- POLY-NORM®
- GEARex®

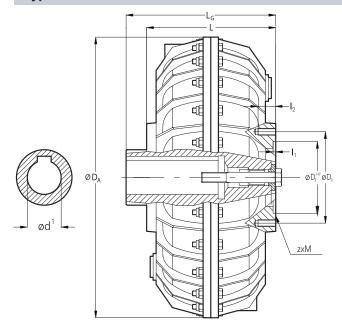
If long distances need to be bridged, KTR's coupling RADEX®-N type NANA, with composite spacer, is recommended. KTR can also provide brake discs/drums if required as well as disc brakes (hydraulically and spring applied).

IEC-motors - selection



								Fluid cou	pling	s for	IEC-mo	tors 1))								
								Motor sp	eed 50	Hz							Motor spe	eed 60	Hz		
	Motors			8-pc	ole		6-pc	ole		4-pc	ole		2-pc	ole		6-po	ole		4-pa	le	
				750 1	/min		1000 1	/min		1500 1/min		3000 1/min			1200 1	/min		1800 1	/min		
Size	Shaft end	dxl [mm]	kW	HP	Coupling	kW	HP	Coupling	kW	HP	Coupling	kW	HP	Coupling	kW	HP	Coupling	kW	HP	Coupling	
7.1	14>	-00				0,25	0.00		0,25	0,33		0,37	0,5		0,25	0.00		0,25	0,35		
71	14)	30				0,25	0,33	10	0,37	0,5		0,55	0,75		0,25	0,33		0,37	0,5		
80	19)	.40				0,37	0,5		0,55	0,75	10	0,75	1		0,37	0,5	10	0,55	0,75		
80	197	.40				0,55	0,75		0,75	1	10	1,1	1,5	10	0,55	0,75		0,75	1	10	
90S	24>	50				0,75	1	20	1,1	1,5		1,5	2	10	0,75	1		1,1	1,5		
90L	24/		0,55	0,75	20	1,1	1,5		1,5	2		2,2	3		1,1	1,5		1,5	2		
100L			1,1	1,5	30	1,5	2		2,2	3		3	3 4		1,5	2	20	2,2	3		
TOOL	28)	60	1,1	1,0	30	1,5		30	3	4	20		-		1,0		20	3	4		
112M			1,5	2		2,2	3		4	5,5		4	5,5		2,2	3		4	5,5	20	
132S			2,2	3	30P	3	4		5,5	7,5		5,5	7,5		3	4		5,5	7,5	20	
1020	38)	80						30P	0,0	7,0	30	7,5	10				30		7,0		
132M	30/		3	4	40P	4	5,5		7,5	10	- 00	5,5	7,5	20	4	5,5	1 7	7,5	10		
102101				7	401	5,5	7,5		7,5	10		7,5	10		5,5	7,5		7,5	10		
160M			4	5.5	50	7.5	10	40P	11	15		11	15		7.5	10	30P	11	15	30	
	42x	110		0,0							30P	15	20		, ,						
160L			7,5	10	55	11	15	50	15	20		18,5	25		11	15		15	20		
180M	48x	110	11	15	- 00	15	20	20	18,5	25	40P	22	30	30	15	20	40P	18,5	25	30P	
180L	10%								22	30					15	20		22	30		
200L	55x	110	15	20	60	18,5	25	─ 55	30	40		30	40		18,5	25		30	40	40P	
						22	30				50	37	50		22	30	50				
225S	55x110	60x140	18,5	25		30	40		37	50		45	60	30P				37	50	50	
225M			22	30	65			60	45	60	55	45	60		30	40	55	45	60		
250M	60x140	65x140	30	40		37	50	65	55	75		55	75	40P	37	50		55	75	55	
280S		75x140	37	50	70P	45	60		75	100	60	75	100		45	60	60	75	100		
280M			45	60		55	75	70P	90	125		90	125	50	55	75		90	125	60	
315S	65x140		55	75	75P	75	100		110	150	65	110	150		75	100	65	110	150		
		80x170	75	100		90	125	75P	132	180		132	180		90	125		132	180	65	
315M			90	125		110	150		160	220	70P	160	220	55	110	150	70P	160	220		
			110	150	80P	132	180		200	270					132	180		200	270	TOD.	
355S			132	180		160	220	80P	250	340					160	220	nep.	250	340	70P	
	75x140	95x170	100	000	85P	000	0.00				75P				000	0.00	75P				
355M			160	220	000	200	270	85P	315	430					200	270	000	315	430	75P	
			200	270	90P	250	340	050	F40	E00	000				250	340	80P	440	000	nep.	
			330	450	90P	370	500	85P	510	700	80P				310	420	80P	440		600 75P	
			600	800	95P	600	800	90P	810	1100	85P 90P				800	600	85P 90P	700	950	80P 85P	
Nor	n standard r	notors	1000	1360	1200	1000	1360	95P	1300	1740	90P 95P					1100	90P 95P	1000	1360	857	
			1000	2100	1200/2	2000	2720	1200	2300	3100					1380						
						3200	4350	1200/2	3850	5250	1200				2580	3500	1200				
							L		L						4200	5710	1200/2				

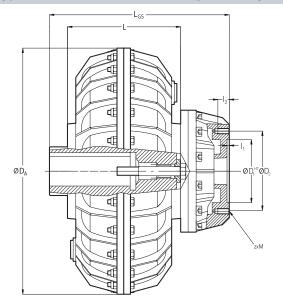
 $^{^{\}rm 1)}$ Fluid couplings available for NEMA-motors

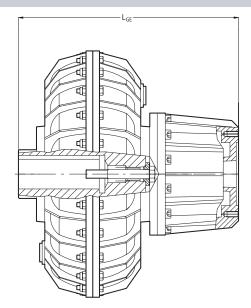


Selection diagram

Type K

- Basic version of constant fill couplings
- Consists of pump and turbine wheel, outer shell
- Starting factor: 1.8-2
- Inner and outer drive possible:
- The coupling is usually mounted on the motor shaft (inner drive). Outer drive on request (coupling is mounted on gearbox shaft).
- Flexible couplings are used to compensate for misalignments



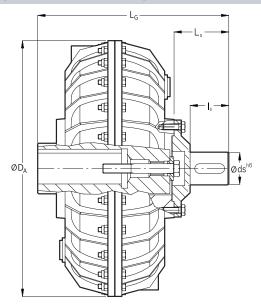

				Technical da	ta				
				Dimens	sions [mm]				
Size				Basic	coupling				
	max. finish bore Ød1	D _A	L	L _G	D ₁ H7	I ₁	D ₂	zxM	
10	24	193	88	98	47	4	60	C:: MC	12
10	28	193	88	114	47	2	80	OX IVIO	9
20	28	230	115	125	62	4	78	G _V MO	16
20	38	230	115	135	52	4	76	OX IVIO	14
	42			162	75				
30	48	290	150	190	72	4	100	8x M8	16
	55			219	72				
	42			162	75				
30P	48	327	150	190	72	4	100	8x M8	16
	55			219	72				
40P	55	338	183	198	100	4	105	125 8x M10	22
401	60	330	103	190	90	4	125		20
50	65	430	154	179	110	4,5	140	8x M10	22
55	65	430	196	211	110	4,5	140	9v M10	22
33	75	430	190	210	110	4,5	140	OX IVI TO	22
60	75	520	172	192	125	8	160	9v M10	22
	80	320	172	222	125	0	100	OX IVITO	22
65	80	520	220	240	125	8	160	8x M10	22
70P	90	640	190	240	150	4	195	9v M16	30
70F	100	640	190	280	150	4	195	OX IVI I O	30
75P	90	640	245	265	150	4	195	9v M16	30
751	100	040	243	280	130	4	195	6x M6 6x M8 8x M8 8x M8 8x M10 8x M10 8x M10 8x M10	30
80P	110	810	226	270	160	5	230	0v M10	28
801	125	810	220	286	100	3	230	OX IVI TO	20
85P	125	810	300	340	160	5	230	0v M10	28
651	135	810	300	340	100	3	230	OX IVI TO	20
90P	130	1000	344	364	445	5	506	16v M20	32
901	140	1000	344	464	445	5	506	16x M20	32
95P	130	1000	166	479	115	5	506	16x M20	32
90F	140	1000	466	586	445	5			32
1200	max. 190	1300	425	462	220	7	310	16x M20	36

 $^{^{1)}}$ Finish bore acc. to ISO fit H7, feather keyway acc. to DIN 6885 sheet 1 - JS9 Finish bore @ \leq 32: H7; Finish bore @ \geq 33: G7 Finish bore length: min. 2xd; max. 2,5xd

Type K with small and enlarged delay chamber

Fluid couplings: small delay chamber

Fluid couplings: enlarged delay chamber

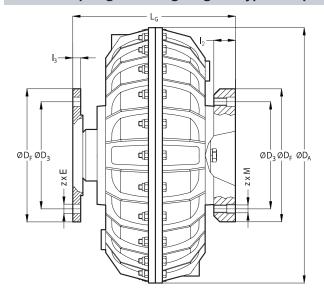

- The basic type "K" is fitted with a delay chamber. The delay chamber is flange-mounted to the outer wheel of the hydrodynamic coupling.
- Start-up factor: 1.5-1.8 (small delay chamber)
- Start-up factor: 1.2-1.5 (enlarged delay chamber)
- Due to the reduced start-up factor even smoother and longer start-ups of the driven machine are enabled.
- Inner and outer drive possible
- Flexible couplings allow for compensation of misalignments

	Technical data												
					Di	mensions [n	nm]						
			Basic	coupling					Small delay chamber	Enlarged delay chamber			
Size	max. finish bore Ød¹	D _A	L	D ₁ H7	l ₁	D_2	zxM	l ₂	L _{GS}	L _{GE}			
	42			75					217	257			
30	48	290	150	72	4	100	8x M8	16	245	285			
	55			72					274	314			
	42			75					217	257			
30P	48	327	150	72	4	100	8x M8	16	245	285			
	55			72					274	314			
40P	60	338	183	90	4	125	8x M10	20	256	328			
50	65	430	154	110	4,5	140	8x M10	22	259	334			
55	65	430	196	110	4.5	140	8x M10	22	291	366			
55	75	430	190	110	4,5	140	OX IVITO	22	290	365			
60	75	520	172	125	8	160	8x M10	22	282	362			
80	80	520	172	125	0	160	OX IVI TO	22	312	392			
65	80	520	220	125	8	160	8x M10	22	330	410			
70P	90	640	190	150		195	8x M16	30	350	465			
701	100	040	190	150	4	190	OX IVI I O	30	390	505			
75P	90	640	245	150	4	195	8x M16	30	375	490			
75F	100	040	240	150	4	190	OX IVI I O	30	390	505			
80P	110	810	226	160	5	230	8x M18	28	388	488			
801	125	810	220	160	5	230	OX IVI I O	20	404	504			
85P	125	810	300	160	5	230	8x M18	28	458	558			
65F	135	810	300	160	5	230	OX IVI I O	20	456	556			
90P	130	1000	344	445	5	506	16x M20	32	424	504			
90F	140	1000	344	440	5	300	I OX IVIZU	32	524	604			
95P	130	1000	466	445	5	506	16x M20	32	599	679			
95P	140	1000	400	445	3	506	1 0x W20	32	706	786			

¹⁾ Finish bore acc. to ISO fit H7, feather keyway acc. to DIN 6885 sheet 1- JS9 Finish bore Ø ≤32: H7; Finish bore Ø ≥33: G7 Finish bore length: min. 2xD; max. 2,5xD

Type K fitted with output shaft

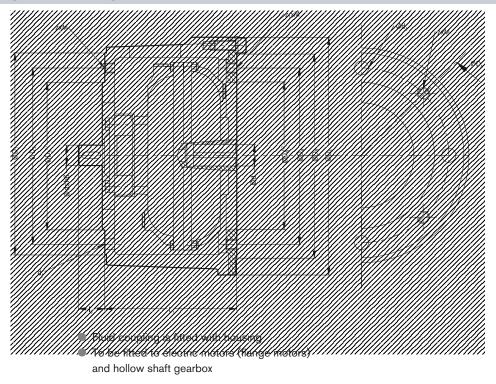
- Fluid coupling is fitted with output shaft
- Also delay chambers can be provided for this version.
 Delay chambers are flange-connected to the coupling, and the output shaft is flange-connected to the delay chamber.
- Flexible coupling can be mounted on the output shaft and allow for compensation of misalignments

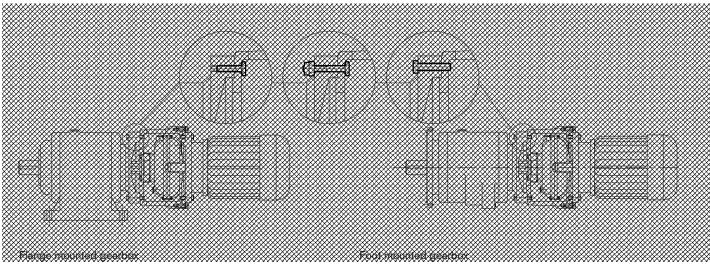


			Technic	al data			
				Dimensions [mm]			
Size				Basic coupling			
	max. finish bore Ød¹	D _A	L _s	L _G	d _s ^{h6}	l _s	
10	24	193	35	133	19	25	
10	28	193	35	149	19	25	
20	28	230	44	169	24	32	
20	38	230	44	179	24	32	
	42			225			
30	48	290	63	253	38	45	
	55			282			
	42			225			
30P	48	327	63	253	38	45	
	55			282			
40P	55	338	76	274	48	55	
401	60	336	76	274	40	55	
50	65	430	92	271	55	65	
55	65	430	92	303	55	65	
33	75	430	92	302	33	03	
60	75	520	110	302	60	80	
00	80	320	110	332	60	80	
65	80	520	110	350	60	80	
70P	90	640	122	362	70	90	
701	100	040	122	402	70	90	
75P	90	640	122	387	70	90	
75F	100	640	122	402	76	90	
80P	110	810	145	415	80	110	
6UF	125	810	145	431	80	110	
85P	125	810	145	485	80	110	
63P	135	610	145	485	60	110	
90P	130	1000	220	584	110	180	
90F	140	1000	220	684	110	180	
95P	130	1000	220	699	160	180	
95P	140	1000	220	806	160	180	
1200	190	1300	290	752	180	250	

 $^{^{1)}}$ Finish bore acc. to ISO fit H7, feather keyway acc. to DIN 6885 sheet 1 - JS9 Finish bore @ \leq 32: H7; Finish bore @ \geq 33: G7 Finish bore length: min. 2xd; max. 2,5xd

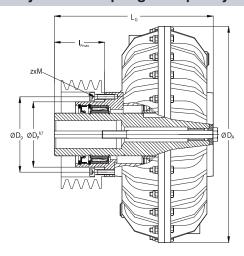
Fluid coupling for flanged gear type couplings




- Fluid coupling can be fitted with GEARex®
- GEARex® type FR with single parted sleeve
- GEARex[®] type DR with split sleeve
- Also delay chambers can be provided for this version.

			Technic	cal data										
0:		Dimensions [mm]												
Size	D _A	L _G	D _F	D ₃	zxE	zxM	l ₃	l ₂						
20	230	150	116	95,25	6x6,4	6x 1/4 28 UNF	6,5	17						
30	290	192,5						10.5						
30P	327	192,5	152,5	122,22	8x9,57	8x 3/8 24 UNF	6,5	18,5						
40P	338	231	152,5				0,5	0.1						
50	430	212						21						
55	430	253					1	24,5						
60	520	235	213	177,8	10x12,57	10x 1/2 20 UNF	10	05.5						
65	520	283						25,5						
70P	640	258,5	0.40	000.05	0.45.055	0.4/0.00.UNE	10	05.5						
75P	640	313,5	240	206,37	8x15,875	8x 1/2 20 UNF	10	25,5						
80P	810	355	000	044.0	0.40.05	0.0/4.40.UNE								
85P	810	425	280	241,3	8x19,05	8x 3/4 10 UNF	28	50						
90P	1000	456	318	279.4	8x19.05	8x 3/4 10 UNF	28	50						

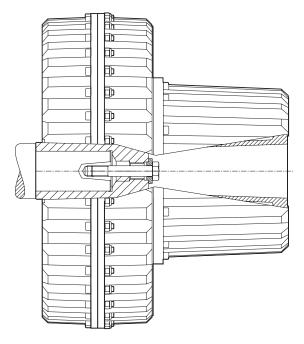
Fluid coupling with housing



	Technical data														
Size		Dimensions [mm]													
Size	max. finish bore Ød1	D _A	L ₁	zxM	d _i	ds h6	l _s	D ₃ =D ₄	D ₅ ^{h7} =D ₆ ^{h7}	$D_7 = D_8$	z ₁ xM				
10	19	240	128	4x M10	4x Ø11	19	25	165	130	200	8x M10				
10	24	240	128	4x W10	4X Ø 1 1	24	25	165	130	200	8X W110				
20	28	292	161	4x M12	4x Ø13	28	32	215	180	250	8x M112				
30	38	350	210	4x M12	4x Ø13	38	45	265	230	300	8x M12				
30P	42	400	210	4x M16	4x Ø17	42	45	300	250	350	8x M16				
40P	48	400	255	4x M16	4x Ø17	48	48	300	250	350	8x M16				

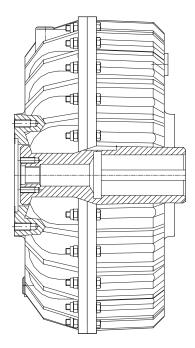
¹⁾ Finish bore acc. to ISO fit H7, feather keyway acc. to DIN 6885 sheet 1 - JS9 Finish bore Ø ≤32: H7; Finish bore Ø ≥33: G7 Finish bore length: min. 2xd; max. 2,5xd

Hydrodynamic coupling with pulley


- Diverse pulleys on request
- Coupling can be fitted with delay chambers
- Vertical and horizontal assembly possible

			Technica	ai data			
Cino				Dimensions [mm]			
Size	max. finish bore Ød¹	D _A	L _G	D ₀ h7	D ₉	I _{pmax}	zxM
	28		185	60	75	70	
20	38	229	218	75	90	85	6x M8
	42		218	85	100	50	
	55		230	96	110	62	1
30	42	290	238	85	100	70	8x M8
	42		262	85	100	94	
	55		285	96	110	117	
	42		218	85	100	50	
	55		230	96	110	62	
30P	42	327	238	85	100	70	8x M8
	42		262	85	100	94	
	55		285	96	110	117	
	48		247		110	63	
	60		273			89	
40P	60	338	301	112	130	117	8x M8
	60		325			141	-
	60		244			70	
			274			100	-
50	65	430	309	130	150	135	8x M8
			334			160	
			286			70	
55	65	430	316	130	150	100	8x M8
			351			135	-
			356			180	
			302			110	
	80		342			150	-
60		520	350	150	170	158	8x M10
			390			198	
			402			210	
			350		170	110	8x M10
65	80	520	390	150		150	
			440			200	
			475			235	
			380			140	
70P	100	640	420	188	210	180	8x M1:
			440			200	
			485			245	
			420			130	
75P	100	640	470	188	210	1801	8x M1:
701	100	040	490	100	210	200	_ Ox IVIT.
			535			245	
	100		386			130	
80P	100	810	436	214	240	180	8x M14
OUP	100	010	481			225	
	125		481	225	250	143	8x M10
	100		460			130	
0.50	100	212	530	214	240	200	8x M14
85P	100	810	555			225	
	125		555	225	250	143	8x M16

 $^{^{1)}}$ Finish bore acc. to ISO fit H7, feather keyway acc. to DIN 6885 sheet 1 - JS9 Finish bore Ø ≤32: H7; Finish bore Ø ≥33: G7 Finish bore length: min. 2xd; max. 2,5xd

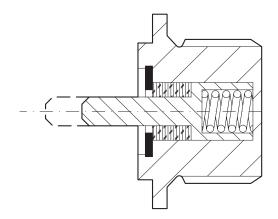


Additional types

Hydrodynamic coupling with and annular chamber

- Fluid coupling is fitted with enlarged delay chamber and annular chamber
- Start-up factor can be further reduced to 1.0-1.2
- Due to the reduced start-up factor even smoother and longer start-ups of the driven machine are enabled.
- Inner and outer drive possible
- Flexible couplings allow for compensation of misalignments

Hydrodynamic coupling with mechanical lock-up at nominal speed


- Hydraulic coupling which provides for smooth acceleration
- Mechanical lock-up at nominal operation (similar to centrifugal clutch)
- No slip at nominal operation
- Can be offered with delay chambers, pulleys, output shaft

Monitoring devices

Fusible plug and thermal switch

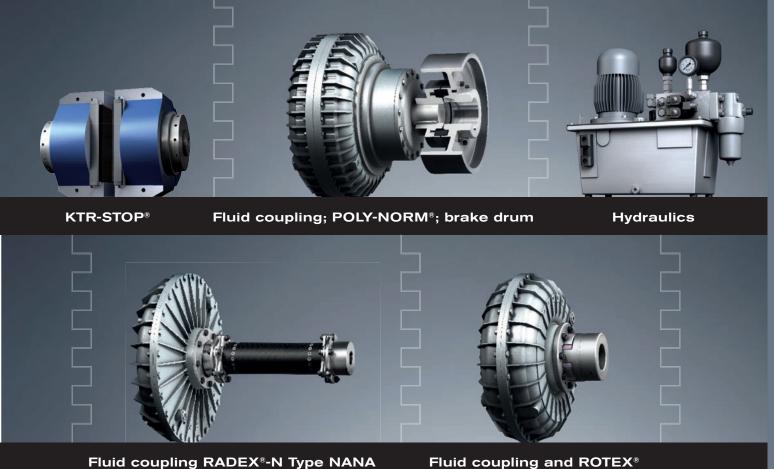
Diverse monitoring may be offered supplementary to the fluid coupling. To protect from overheating, fluid couplings are equipped with fusible plugs that provide for the different temperatures (120 °C; 145 °C; 180° C) at which discharge of the fluid occurs. Standard feature couplings are provided with a fusible plug which allows for discharge at 145 °C. In order to avoid the discharge of oil, and thus loss of operation a thermal switch can be supplied (Figure i). Upon reaching response temperature, a spring-activated pin contacts a microswitch and, depending on the type of circuit, either triggers an alarm or switches off the motor

Non-contact monitoring system

The non-contact monitoring system measures speed variations between drive and driven side (input and output) of the coupling. If a set reference value is exceeded, an alarm occurs or the motor is switched off. Manual settings allow the operator to determine periods during which no alarm occurs and the motor is not switched off, thus allowing for speed fluctuation and start-up phase.

Oils and temperatures

Following oils are recommended for operating temperatures between – 20 °C and 180 °C:


The oil filling level may vary depending on the required startup time. Decreasing the oil filling level will lead to a slower, more gradual, and thus smoother start-up as well as higher slippage during nominal operation.

Manufacturer	Oil
BP	ENERGOL HLP 22/HLP 32
Castrol	Hyspin AWS 46
ESSO	Spinesso 22
Mobil	Velocite
Shell	Tellus 22/Tellus 32

Questionnaire: Technical selection

1. Drive side												
Electric-motor												
Manufacturer:			pe:									
Nominal power:		kW										
Nominal speed:		rpm										
Moment of inertia:	kgm² reduced to coupling speed											
Motor shaft length:		mm										
Motor shaft diameter:												
Activation:	Star-delta 🗌											
Other:												
Discol angino												
Diesel engine Manufacturer:		Type:										
Nominal power:		kW	Je									
Nominal speed:		Rpm										
Two-stroke □	Four-stroke No. of cylinders Piston Ø mm											
	_			mm								
V-motor in-line Cother:	V-angle	° stroke	mm									
2. Driven machine												
Application/type of machi	ne											
Mass moment of inertia		kgm² l	pased on		rpm							
Rated power		kW										
Start-ups/hour												
Required starting-time:	sec	Start-up factor:										
Dimensions of gearbox/m	nachine shaft Ø _		x length	mm								
3. Design variant:												
Installation position of the	o coupling:	horizontal	☐ vertical									
Vertical motor:	couping.	up	down									
		Inner Drive	Outer drive									
Radial disassembly:		Yes	☐ No									
Brake drum: diameter	mm	length	mm									
Brake disc: diameter	mm	length	mm									
Pulley: diameter	mm gro	ove profile	No. of grooves									
4. General												
Ambient temperature:												
Environment:												
Other:												
5. Remarks: (quantity, installation,												
other couplings)												

Everything from one single source. KTR - your system supplier

KTR-STOP®

 $\mathsf{KTR}\text{-}\mathsf{STOP}^{\text{\tiny{(8)}}}$ is the recently developed brake system of KTR. It was designed for applications with high forces and adverse environmental conditions.

Coupling with brake drum/-disc

KTR produce drive components for numerous industrial applications. Our couplings are often delivered combined with an integrated brake drum/disc.

Hydraulics

The brake calipers of KTR-STOP® are activated via the hydraulic power pack and for that reason we provide both solid and reliable power pack components for use under the heaviest conditions.

IntelliRamp®

IntelliRamp® is the newly developed control system for reproducing brake processes with consideration for speed against time.

KTR worldwide:

Belgium/Luxemburg

KTR Benelux B. V. (Bureau Belgien)

Blancefloerlaan 167/22 B-2050 Antwerpen Phone: +32 3 2110567

+32 3 2110568 Fax: ktr-be@ktr.com E-mail:

Brazil

KTR do Brasil Ltda. Rua Jandaia do Sul 471 -Bairro Emiliano Perneta

Pinhais - PR - Cep: 83321-040

Brasil Phone: +55 41 36 69 57 13 Fax: +55 41 36 69 57 13

ktr-br@ktr.com

E-mail: Canada

KTR Corporation 122 Anchor Road

Michigan City, Indiana 46360

USA

Phone: +1 2 19 8 72 91 00 +1 2 19 8 72 91 50

E-mail: ktr-us@ktr.com

China

KTR Power Transmission Technology

(Shanghai) Co. Ltd.

Building 1005, ZOBON Business Park 999 Wangqiao Road

Pudong

Shanghai 201201

China Phone:

+86 21 58 38 18 00 Fax: +86 21 58 38 19 00 F-mail: ktr-cn@ktr.com

Czech Republic KTR CR, spol. s. r. o. Olomoucká 226 CZ-569 43 Jevícko

+420 461 325 162 Phone: +420 461 325 162 Fax: E-mail: ktr-cz@ktr.com

Finland KTR Finland OY Tiistinniityntie 4 SF-02230 Espoo PL 23

SF-02231 Espoo Phone: +358 2 07 41 46 10 +358 2 07 41 46 19 Fax: E-mail: ktr-fi@ktr.com

KTR France S.A.R.L. 46 – 48 Chemin de la Bruyère

F-69570 Dardilly Phone: +33 478 64 54 66 Phone: Fax: +33 478 64 54 31 ktr-fr@ktr.com E-mail:

Great Britain

KTR Couplings Ltd. Robert House Unit 7, Acorn Business Park Woodseats Close

Sheffield England, S8 0TB

+44 11 42 58 77 57 Phone: +44 11 42 58 77 40 Fax: ktr-uk@ktr.com

E-mail: India

KTR Couplings (India) Pvt. Ltd., T-36 / 37 / 38, MIDC Bhosari Pune 411026

India +91 20 27 12 73 22 Fax: +91 20 27 12 73 23

E-mail: ktr-in@ktr.com

Italy
KTR Kupplungstechnik GmbH Sede senza rappresentanza stabile sul

Territorio Nazionale Via Fermi, 25

I-40033 Casalecchio di Reno (BO) +39 051 613 32 32 +39 02 700 37 570 Phone:

Fax: E-mail: ktr-it@ktr.com Japan KTR Japan Co., Ltd. 3-1-23 Daikaidori Hyogo-ku, Kobe-shi

652-0803 Japan Phone: +81 7 85 74 03 13 Fax: +81 7 85 74 03 10 ktr-jp@ktr.com

KTR Japan - Tokyo Office 1-11-6, Higashi-Ueno, Taito-Ku, Tokyo 110-0015 Japan (Takeno-building, 5F)

Japan Phone: +81 3 58 18 32 07 +81 3 58 18 32 08 Fax:

KTR Korea Ltd. # 101, 978-10, Topyung-Dong Guri-City, Gyeonggi-Do 471-060 Korea

+82 3 15 69 45 10 Phone: +82 3 15 69 45 25 Fax: E-mail: ktr-kr@ktr.com

Netherlands

KTR Benelux B. V. Postbus 87 NL-7550 AB Hengelo (O) Adam Smithstraat 37

NL-7559 SW Hengelo (O) Tel.: +31 74 2553680 Fax: +31 74 2553689 E-Mail: ktr-nl@ktr.com

Norway KTR Kupplungstechnik Norge AS

Fjellbovegen 13 N-2016 Frogner

+47 64 83 54 90 Phone: Fax: +47 64 83 54 95 E-mail: ktr-no@ktr.com

Poland

KTR Polska SP. Z. O. O. ul. Czerwone Maki 65 PL - 30-392 Kraków

Phone: +48 12 267 28 83 +48 12 267 07 66 E-mail: ktr-pl@ktr.com

Portugal KTR Kupplungstechnik GmbH c) Estartetxe, n° 5 - Oficina 218 E-48940 Leioa (Vizcaya) Phone: +34 9 44 80 39 09 +34 9 44 31 68 07 Fax: E-mail: ktr-es@ktr.com

Russia KTR Privodnaya technika, LLC 6 Verhnii Pereulok 12 Litera A, Office 229 194292 St. Petersburg

Russia

+7 812 383 51 20 Phone: +7 812 383 51 25 Fax: E-mail: ktr-ru@ktr.com Internet: www.ktr.ru

Spain KTR Kupplungstechnik GmbH c) Estartetxe, n° 5 – Oficina 218 E-48940 Leioa (Vizcaya) Phone: +34 9 44 80 39 09

Fax: +34 9 44 31 68 07 ktr-es@ktr.com E-mail:

Sweden

KTR Sverige AB Box 742

S - 191 27 Sollentuna Phone: +46 86 25 02 90 Fax: +46 86 25 02 99 E-mail: info.se@ktr.com

Switzerland

KTR Kupplungstechnik AG

Bahnstr. 60

CH - 8105 Regensdorf Phone: +41 4 33 11 15 55 Fax: +41 4 33 11 15 56 ktr-ch@ktr.com

Taiwan

KTR Taiwan Ltd.

1 F, No.: 17, Industry 38 Road Taichung Industry Zone

Taichung

Taiwan, R. O. C. Phone: +886 4 23 59 32 78

Fax: +886 4 23 59 75 78 ktr-tw@ktr.com E-mail:

Turkey KTR Turkey

Güç Aktarma Sistemleri San. ve Tic. Ltd. Sti.

Kayışdagı Cad. No: 117/2 34758 Atasehir -İstanbul Phone: +90 216 574 37 80 Fax: +90 216 574 34 45 E-mail: ktr-tr@ktr.com

USA

KTR Corporation 122 Anchor Road Michigan City, Indiana 46360

USA

Phone: +1 2 19 8 72 91 00 +1 2 19 8 72 91 50 Fax: E-mail: ktr-us@ktr.com

KTR Kupplungstechnik GmbH

Postfach 1763

D-48407 Rheine

+49(0)5971 798-0 Phone:

+49(0)5971 798-698 u. 798-450 Fax:

E-mail: mail@ktr.com Internet: www.ktr.com

